	Questions	Ideas of the proofs	Open questions
		0000000	

Answer to a question of Rosłanowski and Shelah

Small-large subgroups of locally compact groups

Márk Poór Eötvös University, Budapest

Winter School in Abstract Analysis 2017

Introduction			Ideas of the proofs	Open questions
•	00	00	0000000	00
Introduo	ction			

Small-large subsets

```
\bullet Orthogonality of {\cal N} and {\cal M}:
```

```
\exists H \subseteq \mathbb{R}, \ H \in \mathcal{N}, \ \mathbb{R} \setminus H \in \mathcal{M}.
```

• Obviously H (similarly $\mathbb{R} \setminus H$) cannot be a subgroup:

 $H \leq \mathbb{R}, \quad H \in \mathcal{N}$ \Downarrow $\exists c \notin H$

H, (H + c) are disjoint co-meager sets.

What about subgroups that are small in one sense, and not small in the other?

Introduction			Ideas of the proofs	Open questions
•	00	00	0000000	00
Introdu	ction			

Small-large subsets

• Orthogonality of $\mathcal N$ and $\mathcal M$:

$$\exists H \subseteq \mathbb{R}, \ H \in \mathcal{N}, \ \mathbb{R} \setminus H \in \mathcal{M}.$$

• Obviously H (similarly $\mathbb{R} \setminus H$) cannot be a subgroup:

$$H \leq \mathbb{R}, \quad H \in \mathcal{N}$$

 \Downarrow
 $\exists c \notin H$
 $H, (H + c)$ are disjoint co-meager sets.

What about subgroups that are small in one sense, and not small in the other?

Introduction			Ideas of the proofs	Open questions
•	00	00	0000000	00
Introdu	ction			

Small-large subsets

• Orthogonality of ${\mathcal N}$ and ${\mathcal M}:$

$$\exists H \subseteq \mathbb{R}, \ H \in \mathcal{N}, \ \mathbb{R} \setminus H \in \mathcal{M}.$$

• Obviously H (similarly $\mathbb{R} \setminus H$) cannot be a subgroup:

$$H \leq \mathbb{R}, \quad H \in \mathcal{N}$$

 \downarrow
 $\exists c \notin H$
 $H, (H + c)$ are disjoint co-meager sets.

What about subgroups that are small in one sense, and not small in the other?

Subgroups	contained		one idea		00
Introduction	Known results	Questions	Answers	Ideas of the proofs	Open questions

Theorem (Talagrand, 1980.)

There exist a null but non-meager filter in 2^{ω} .

Theorem (Rosłanowski-Shelah, 2016.)

There exists a null but non-meager subgroup in 2^{ω} (and in \mathbb{R}).

Corollary

There is no translation invariant Borel hull operation on \mathcal{N} .

Definition

 $f: \mathcal{N} \to \mathcal{N} \cap \mathcal{B}$ is a translation invariant Borel hull operation on \mathcal{N} , if $N \subseteq f(N)$ and $f(N + x) = f(N) + x \ (\forall N, x)$

Introduction	Known results	Questions	Answers	Ideas of the proofs	Open questions
	•0				
Subgrou	ps containe	ed in exac	tly one ic	deal	

Theorem (Talagrand, 1980.)

There exist a null but non-meager filter in 2^{ω} .

Theorem (Rosłanowski-Shelah, 2016.)

There exists a null but non-meager subgroup in 2^{ω} (and in \mathbb{R}).

Corollary

There is no translation invariant Borel hull operation on \mathcal{N} .

Definition

 $f: \mathcal{N} \to \mathcal{N} \cap \mathcal{B}$ is a translation invariant Borel hull operation on \mathcal{N} , if $N \subseteq f(N)$ and $f(N + x) = f(N) + x \ (\forall N, x)$

Introduction	Known results	Questions	Answers	Ideas of the proofs	Open questions
	•0	00		0000000	00
Subgrou	ips containe	ed in exac	tly one ic	deal	

Theorem (Talagrand, 1980.)

There exist a null but non-meager filter in 2^{ω} .

Theorem (Rosłanowski-Shelah, 2016.)

There exists a null but non-meager subgroup in 2^{ω} (and in \mathbb{R}).

Corollary

There is no translation invariant Borel hull operation on \mathcal{N} .

Definition

 $f: \mathcal{N} \to \mathcal{N} \cap \mathcal{B}$ is a translation invariant Borel hull operation on \mathcal{N} , if $N \subseteq f(N)$ and $f(N + x) = f(N) + x \ (\forall N, x)$

Introduction	Known results	Questions	Answers	Ideas of the proofs	Open questions
	0				
Subgrou	ps containe	ed in exac	tly one ic	deal	

Theorem (Talagrand, 1980.)

There exist a null but non-meager filter in 2^{ω} .

Theorem (Rosłanowski-Shelah, 2016.)

There exists a null but non-meager subgroup in 2^{ω} (and in \mathbb{R}).

Corollary

There is no translation invariant Borel hull operation on \mathcal{N} .

Definition

 $f: \mathcal{N} \to \mathcal{N} \cap \mathcal{B}$ is a translation invariant Borel hull operation on \mathcal{N} , if $N \subseteq f(N)$ and $f(N+x) = f(N) + x \ (\forall N, x)$

	Known results			Ideas of the proofs	Open questions
	00	00		0000000	00
Subgrou	ups in exact	lv one ide	al		

Meager but non-null subgroups in 2^{ω} (and in \mathbb{R}):

Independent:

 $\mathsf{CH} \ \Rightarrow \ \mathsf{cof}(\mathcal{N}) = \mathsf{cov}(\mathcal{N}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

 $\operatorname{non}(\mathcal{N}) < \operatorname{non}(\mathcal{M}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\text{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

Remark

This latter generalizes to Polish locally compact groups.

Theorem (Rosłanowski-Shelah, 2016.)

It is consistent with ZFC that every meager subgroup is null in 2^ω (and in $\mathbb R).$

This latter theorem also follows from an unpublished result of H. Friedman. Introduction Known results Questions Answers Ideas of the proofs Open questions of the proofs occord occord

Meager but non-null subgroups in 2^{ω} (and in \mathbb{R}): Independent:

 $\mathsf{CH} \ \Rightarrow \ \mathsf{cof}(\mathcal{N}) = \mathsf{cov}(\mathcal{N}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

 $\mathsf{non}(\mathcal{N}) < \mathsf{non}(\mathcal{M}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

Remark

This latter generalizes to Polish locally compact groups.

Theorem (Rosłanowski-Shelah, 2016.)

It is consistent with ZFC that every meager subgroup is null in 2^ω (and in $\mathbb R).$

This latter theorem also follows from an unpublished result of H. Friedman. Introduction Known results Questions Answers Ideas of the proofs Open questions of the proofs occord occord

Meager but non-null subgroups in 2^{ω} (and in \mathbb{R}): Independent:

 $\mathsf{CH} \ \Rightarrow \ \mathsf{cof}(\mathcal{N}) = \mathsf{cov}(\mathcal{N}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

 $\mathsf{non}(\mathcal{N}) < \mathsf{non}(\mathcal{M}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

Remark

This latter generalizes to Polish locally compact groups.

Theorem (Rosłanowski-Shelah, 2016.)

It is consistent with ZFC that every meager subgroup is null in 2 $^{\omega}$ (and in $\mathbb R$).

This latter theorem also follows from an unpublished result of H. Friedman. Introduction Known results Questions Answers Ideas of the proofs Open questions of the proofs occord occord

Meager but non-null subgroups in 2^{ω} (and in \mathbb{R}): Independent:

 $\mathsf{CH} \ \Rightarrow \ \mathsf{cof}(\mathcal{N}) = \mathsf{cov}(\mathcal{N}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

 $\mathsf{non}(\mathcal{N}) < \mathsf{non}(\mathcal{M}) \ \Rightarrow \ \exists H \leq 2^{\omega} \ (\mathsf{and} \ \mathbb{R}), \ H \in \mathcal{M} \setminus \mathcal{N}$

Remark

This latter generalizes to Polish locally compact groups.

Theorem (Rosłanowski-Shelah, 2016.)

It is consistent with ZFC that every meager subgroup is null in 2^{ω} (and in \mathbb{R}).

This latter theorem also follows from an unpublished result of H. Friedman.

		Questions	Ideas of the proofs	Open questions
		0		
The ger	neral case			

Rosłanowski and Shelah asked the following questions:

Question

Does every non-discrete locally compact group contain a null non-meager subgroup?

Question

Is it consistent with ZFC that in every locally compact group every meager subgroup is null?

		Questions	Ideas of the proofs	Open questions
	00	00	0000000	00
The ge	neral case			

Definition (left Haar measure on a locally compact group)

If $\mu_L : \mathcal{B}(G) \to [0,\infty]$ is a Borel measure which is

- left-invariant, i.e. $\mu_L(B) = \mu_L(gB)$,
- inner regular, i.e. $\mu_L(B) = \sup\{\mu_L(K) : K \subseteq B, K \text{ is compact}\},\$
- $\mu_L(U) > 0$ for $U \neq \emptyset$ open, $\mu_L(K) < \infty$ for K compact,

then μ_L is a left Haar measure of G. Let $\overline{\mu}_L$ denote its completion.

Remark

For an arbitrary locally compact group left and right Haar measures always exist, and both are unique up to a positive multiplicative constant.

Remark

Recall that the ideal of null sets wrt. $\overline{\mu}_L$ coincides with the ideal of null sets wrt. $\overline{\mu}_R$, i.e. we can speak about null sets:

$$\mathcal{N} = \mathcal{N}_R = \mathcal{N}_L$$

	Known results 00	Questions 00	Answers •	ldeas of the proofs	Open questions 00
Answer					

For both questions we have affirmative answers:

Theorem (M.P. 2016.)

If G is an arbitrary non-discrete locally compact group, then there exists a null but non-meager subgroup in G.

Theorem (M.P. 2016.)

In the Cohen model in every locally compact group every meager subgroup is null.

	Known results 00	Questions 00	Answers •	ldeas of the proofs	Open questions 00
Answer					

For both questions we have affirmative answers:

Theorem (M.P. 2016.)

If G is an arbitrary non-discrete locally compact group, then there exists a null but non-meager subgroup in G.

Theorem (M.P. 2016.)

In the Cohen model in every locally compact group every meager subgroup is null.

Null but	t non-meag		ups in 2^{ω}		00
	00	00		0000000	
Introduction	Known results	Questions	Answers	Ideas of the proofs	Open questions

Theorem

There exists a null but non-meager subgroup of 2^{ω} .

Proof (Rosłanowski-Shelah)

Fix a non-principal ultrafilter ${\mathcal U}$ on $\omega.$ Partition ω into disjoint intervals:

$$I_j = [j^2, (j+1)^2),$$

and let

$$H = \{ x \in 2^{\omega} : \ \{ j : \ x_{|I_j} \equiv \underline{0} \} \in \mathcal{U} \},$$

i.e. those sequences that are constant 0 on \mathcal{U} -almost every I_j -s.

Meager	but non-ni	ill subgrou	$\cos in 2^{\omega}$		
0	00	00	0	0000000	00
		Questions		Ideas of the proofs	Open questions

Theorem (H. Friedman)

The following holds in the Cohen model: Assume that $F \subseteq 2^{\omega} \times 2^{\omega}$ is an F_{σ} -set which contains a non-null rectangle

 $C \times D \subseteq F$.

Then F contains a non-null measurable rectangle $A \times B$.

Corollary (Fremlin, Shelah)

In the Cohen model every meager subgroup of 2^{ω} is null.

Proof.

Let the meager subgroup $H \leq 2^{\omega}$ be covered by an F_{σ} meager set $S \subseteq 2^{\omega}$:

 $H \subseteq S$

Meager	but non-ni	ill subgrou	$\cos in 2^{\omega}$		
0	00	00	0	0000000	00
		Questions		Ideas of the proofs	Open questions

Theorem (H. Friedman)

The following holds in the Cohen model: Assume that $F \subseteq 2^{\omega} \times 2^{\omega}$ is an F_{σ} -set which contains a non-null rectangle

 $C \times D \subseteq F$.

Then F contains a non-null measurable rectangle $A \times B$.

Corollary (Fremlin, Shelah)

In the Cohen model every meager subgroup of 2^{ω} is null.

Proof.

Let the meager subgroup $H \leq 2^{\omega}$ be covered by an F_{σ} meager set $S \subseteq 2^{\omega}$:

 $H \subseteq S$

Meager	hut non-ni	ill subgrou	$uns in 2^{\omega}$		
0	00	00	0	0000000	00
		Questions		Ideas of the proofs	Open questions

Theorem (H. Friedman)

The following holds in the Cohen model: Assume that $F \subseteq 2^{\omega} \times 2^{\omega}$ is an F_{σ} -set which contains a non-null rectangle

 $C \times D \subseteq F$.

Then F contains a non-null measurable rectangle $A \times B$.

Corollary (Fremlin, Shelah)

In the Cohen model every meager subgroup of 2^{ω} is null.

Proof.

Let the meager subgroup $H \leq 2^{\omega}$ be covered by an F_{σ} meager set $S \subseteq 2^{\omega}$:

 $H \subseteq S$

				Ideas of the proofs	Open questions
	00	00		0000000	00
Meager	but non-nu	ill subgrou	$uns in 2^{\omega}$		

$H \subseteq S$

• Let $f: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ denote the group operation.

- Then f⁻¹(S) ⊆ 2^ω × 2^ω is an F_σ-set, containing H × H, since H is a subgroup.
- If $H \times H$ were non-null, then using Friedman's theorem there would be a measurable non-null rectangle

$$A \times B \subseteq f^{-1}(S).$$

				Ideas of the proofs	Open questions
	00	00		0000000	00
Meager	but non-nu	ill subgrou	$uns in 2^{\omega}$		

$H \subseteq S$

- Let $f: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ denote the group operation.
- Then $f^{-1}(S) \subseteq 2^{\omega} \times 2^{\omega}$ is an F_{σ} -set, containing $H \times H$, since H is a subgroup.
- If $H \times H$ were non-null, then using Friedman's theorem there would be a measurable non-null rectangle

$$A \times B \subseteq f^{-1}(S).$$

Meager	hut non-ni	ill subgrou	$100 \text{ in } 2^{\omega}$		
	00	00		0000000	00
		Questions		Ideas of the proofs	Open questions

$H \subseteq S$

- Let $f: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ denote the group operation.
- Then $f^{-1}(S) \subseteq 2^{\omega} \times 2^{\omega}$ is an F_{σ} -set, containing $H \times H$, since H is a subgroup.
- If $H \times H$ were non-null, then using Friedman's theorem there would be a measurable non-null rectangle

$$A \times B \subseteq f^{-1}(S).$$

Maagar	but non-ni	II aubarra	$in 2\omega$		
	00	00		0000000	00
		Questions		Ideas of the proofs	Open questions

$H \subseteq S$

- Let $f: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ denote the group operation.
- Then $f^{-1}(S) \subseteq 2^{\omega} \times 2^{\omega}$ is an F_{σ} -set, containing $H \times H$, since H is a subgroup.
- If $H \times H$ were non-null, then using Friedman's theorem there would be a measurable non-null rectangle

$$A \times B \subseteq f^{-1}(S).$$

	Known results	Questions		Ideas of the proofs	Open questions
•	00	00		0000000	00
Null but	non-meage	er subgroi	ups in loc	cally compact	groups

Theorem (M.P. 2016.)

If G is a non-discrete locally compact group, then there exists a null but non-meager subgroup in G.

Our proof splits into the following three steps:

- Step 1: For an arbitrary G, find a compact normal subgroup K ⊲ G such that G/K is a Polish Lie group, or a Polish profinite group.
- Step 2: Assuming that there exists a null but non-meager subgroup in G/K, verify that its pull-back under the quotient mapping is also null and non-meager in G.
- Step 3: Construction of null but non-meager subgroups in Polish Lie groups, and Polish profinite groups.

 Introduction
 Known results
 Questions
 Answers
 Ideas of the proofs
 Open questions

 0
 00
 0
 0
 000000000
 00

 Null but non-meager subgroups in locally compact groups

For Steps 1 & 2 our main tool is the following:

Theorem (Gleason-Yamabe)

Let G be an arbitrary locally compact group. Then there exists an open subgroup $G' \leq G$ such that for each neighborhood U of the identity there is a compact normal subgroup $K \triangleleft G'$ inside U, and G'/K is a Lie group.

With a slight modification we obtain a technical lemma:

Lemma

Let G be an arbitrary locally compact group. Then there exists an open subgroup $G' \leq G$ such that for each neighborhood U of the identity there is a compact normal subgroup $K \triangleleft G'$ inside U, and G'/K is a Polish Lie group.

Hence from now on we can assume that G = G', thus G is the inverse limit of Polish Lie groups.

For Steps 1 & 2 our main tool is the following:

Theorem (Gleason-Yamabe)

Let G be an arbitrary locally compact group. Then there exists an open subgroup $G' \leq G$ such that for each neighborhood U of the identity there is a compact normal subgroup $K \triangleleft G'$ inside U, and G'/K is a Lie group.

With a slight modification we obtain a technical lemma:

Lemma

Let G be an arbitrary locally compact group. Then there exists an open subgroup $G' \leq G$ such that for each neighborhood U of the identity there is a compact normal subgroup $K \triangleleft G'$ inside U, and G'/K is a Polish Lie group.

Hence from now on we can assume that G = G', thus G is the inverse limit of Polish Lie groups.

	Known results 00	Questions 00	ldeas of the proofs ○○○○○●○○	Open questions 00
Step 2				

Lemma

Let $K \triangleleft G$ be a compact normal subgroup such that G/K is Polish. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup $K' \subseteq K$, where G/K' is Polish, and a co-meager set $R' \subseteq G/K'$ such that

$$\pi^{-1}(R')\subseteq R$$

where $\pi: G \to G/K'$ denotes the canonical projection.

Let $H/K \leq G/K$ be a non-meager subgroup. If the pull-back H were meager in G, then letting $R = G \setminus H$, and applying the above Lemma, there would exist a compact normal subgroup $K' \lhd G$, $K' \subseteq K$, such that $H/K' \leq G/K'$ is meager. Now since $H/K \leq G/K$ is non-meager, its preimage H/K' under the projection $\psi : G/K' \to (G/K')/(K/K') = G/K$ is also non-meager since ψ is a continuous open mapping between Polish spaces, a contradiction.

	Known results 00	Questions 00	ldeas of the proofs ○○○○○●○○	Open questions 00
Step 2				

Lemma

Let $K \triangleleft G$ be a compact normal subgroup such that G/K is Polish. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup $K' \subseteq K$, where G/K' is Polish, and a co-meager set $R' \subseteq G/K'$ such that

$$\pi^{-1}(R') \subseteq R$$

where $\pi: G \to G/K'$ denotes the canonical projection.

Let $H/K \leq G/K$ be a non-meager subgroup.

If the pull-back H were meager in G, then letting $R = G \setminus H$, and applying the above Lemma, there would exist a compact normal subgroup $K' \lhd G, K' \subseteq K$, such that $H/K' \leq G/K'$ is meager. Now since $H/K \leq G/K$ is non-meager, its preimage H/K' under the projection $\psi : G/K' \to (G/K')/(K/K') = G/K$ is also non-meager since ψ is a continuous open mapping between Polish spaces, a contradiction.

	Known results 00	Questions 00	ldeas of the proofs ○○○○○●○○	Open questions 00
Step 2				

Lemma

Let $K \triangleleft G$ be a compact normal subgroup such that G/K is Polish. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup $K' \subseteq K$, where G/K' is Polish, and a co-meager set $R' \subseteq G/K'$ such that

$$\pi^{-1}(R') \subseteq R$$

where $\pi: G \to G/K'$ denotes the canonical projection.

Let $H/K \leq G/K$ be a non-meager subgroup. If the pull-back H were meager in G, then letting $R = G \setminus H$, and applying the above Lemma, there would exist a compact normal subgroup $K' \lhd G$, $K' \subseteq K$, such that $H/K' \leq G/K'$ is meager. Now since $H/K \leq G/K$ is non-meager, its preimage H/K' under the projection $\psi : G/K' \to (G/K')/(K/K') = G/K$ is also non-meager since ψ is a continuous open mapping between Polish spaces, a contradiction.

	Known results 00	Questions 00	ldeas of the proofs ○○○○○●○○	Open questions 00
Step 2				

Lemma

Let $K \triangleleft G$ be a compact normal subgroup such that G/K is Polish. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup $K' \subseteq K$, where G/K' is Polish, and a co-meager set $R' \subseteq G/K'$ such that

$$\pi^{-1}(R') \subseteq R$$

where $\pi: G \to G/K'$ denotes the canonical projection.

Let $H/K \leq G/K$ be a non-meager subgroup.

If the pull-back H were meager in G, then letting $R = G \setminus H$, and applying the above Lemma, there would exist a compact normal subgroup $K' \lhd G$, $K' \subseteq K$, such that $H/K' \leq G/K'$ is meager. Now since $H/K \leq G/K$ is non-meager, its preimage H/K' under the projection $\psi : G/K' \to (G/K')/(K/K') = G/K$ is also non-meager since ψ is a continuous open mapping between Polish spaces, a contradiction.

		Questions		Ideas of the proofs	Open questions
				00000000	
Meager	but non-nu	ıll subgroi	ups, Step	1	

Theorem (M.P. 2016.)

In the Cohen model in every locally compact group every meager subgroup is null.

- Step 1: Friedman's theorem holds for Polish locally compact groups.
- Step 2: Assuming that our theorem holds for Polish locally compact groups, it holds for all locally compact groups.

Step 1: Fixing a locally compact Polish group G, using the Measure Isomorphism Theorem there exist F_{σ} co-null sets $C \subseteq 2^{\omega}$, $K \subseteq G$, and a bijection

$$f: C \to K$$

such that

 $A \subseteq C \text{ is null } \iff f(A) \subseteq K \text{ is null,}$ $A \subseteq C \text{ is } F_{\sigma} \iff f(A) \subseteq K \text{ is } F_{\sigma}.$

		Questions		Ideas of the proofs	Open questions
	00	00		00000000	00
Meager	but non-nu	II subgrou	ups, Step	1	

Theorem (M.P. 2016.)

In the Cohen model in every locally compact group every meager subgroup is null.

- Step 1: Friedman's theorem holds for Polish locally compact groups.
- Step 2: Assuming that our theorem holds for Polish locally compact groups, it holds for all locally compact groups.

Step 1: Fixing a locally compact Polish group G, using the Measure Isomorphism Theorem there exist F_{σ} co-null sets $C \subseteq 2^{\omega}$, $K \subseteq G$, and a bijection

$$f: C \to K$$

such that

$$A \subseteq C \text{ is null } \iff f(A) \subseteq K \text{ is null,}$$
$$A \subseteq C \text{ is } F_{\sigma} \iff f(A) \subseteq K \text{ is } F_{\sigma}.$$

		Questions		Ideas of the proofs	Open questions
	00	00		0000000	00
Meager	but non-nu	ll subgrou	ins Sten	2	

Let G be a locally compact group which is an inverse limit of Polish Lie groups. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup K, where G/K is Polish, and a co-meager set $R' \subseteq G/K$ such that

$$\tau^{-1}(R')\subseteq R,$$

where $\pi: G \to G/K$ denotes the canonical projection.

- Then applying the above Lemma, π⁻¹(R') ∩ H = Ø, thus π(H) ∩ R' = Ø, i.e. π(H) ≤ G/K is a meager subgroup. Thus is null, since the theorem holds for Polish groups.
- Then $\pi^{-1}(\pi(H)) \supseteq H$ is also null.

				Ideas of the proofs	Open questions
	00	00		0000000	00
Meager h	ut non-null	suboro	ins Sten	2	

Let G be a locally compact group which is an inverse limit of Polish Lie groups. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup K, where G/K is Polish, and a co-meager set $R' \subseteq G/K$ such that

$$\tau^{-1}(R')\subseteq R,$$

where $\pi: G \to G/K$ denotes the canonical projection.

Step 2: Assuming that $H \leq G$ is a meager subgroup, let $R = G \setminus H$.

 Then applying the above Lemma, π⁻¹(R') ∩ H = Ø, thus π(H) ∩ R' = Ø, i.e. π(H) ≤ G/K is a meager subgroup. Thus is null, since the theorem holds for Polish groups.

• Then $\pi^{-1}(\pi(H)) \supseteq H$ is also null.

				Ideas of the proofs	Open questions
	00	00		0000000	00
Meager H	out non-nu	ll subgroi	ins Sten	2	

Let G be a locally compact group which is an inverse limit of Polish Lie groups. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup K, where G/K is Polish, and a co-meager set $R' \subseteq G/K$ such that

$$\tau^{-1}(R')\subseteq R,$$

where $\pi: G \to G/K$ denotes the canonical projection.

- Then applying the above Lemma, π⁻¹(R') ∩ H = Ø, thus π(H) ∩ R' = Ø, i.e. π(H) ≤ G/K is a meager subgroup. Thus is null, since the theorem holds for Polish groups.
- Then $\pi^{-1}(\pi(H)) \supseteq H$ is also null.

		Questions		Ideas of the proofs	Open questions
	00	00		0000000	00
Meager	but non-nu	ll subgrou	ins Sten	2	

Let G be a locally compact group which is an inverse limit of Polish Lie groups. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup K, where G/K is Polish, and a co-meager set $R' \subseteq G/K$ such that

$$\tau^{-1}(R')\subseteq R,$$

where $\pi: G \to G/K$ denotes the canonical projection.

- Then applying the above Lemma, π⁻¹(R') ∩ H = Ø, thus π(H) ∩ R' = Ø, i.e. π(H) ≤ G/K is a meager subgroup. Thus is null, since the theorem holds for Polish groups.
- Then $\pi^{-1}(\pi(H)) \supseteq H$ is also null.

		Questions		Ideas of the proofs	Open questions
	00	00		0000000	00
Meager	but non-nu	ll subgrou	ins Sten	2	

Let G be a locally compact group which is an inverse limit of Polish Lie groups. Let $R \subseteq G$ be a co-meager set. Then there exists a compact normal subgroup K, where G/K is Polish, and a co-meager set $R' \subseteq G/K$ such that

$$\tau^{-1}(R')\subseteq R,$$

where $\pi: G \to G/K$ denotes the canonical projection.

- Then applying the above Lemma, π⁻¹(R') ∩ H = Ø, thus π(H) ∩ R' = Ø, i.e. π(H) ≤ G/K is a meager subgroup. Thus is null, since the theorem holds for Polish groups.
- Then $\pi^{-1}(\pi(H)) \supseteq H$ is also null.

Introduction O	Known results 00	Questions 00	Answers O	ldeas of the proofs	Open questions •O
Que	stion				
repla	cing null sets wr	t. the Haar m	easure with s	compact Polish gro sets in the Haar-nu	ıll ideal
(in tl	he sense of Chris	tensen), i.e. s	ubgroups in '	$\mathcal{HN}\setminus\mathcal{M},\ \mathcal{M}\setminus\mathcal{H}.$	N?

Definition

Let G be a Polish group. Then a set $A \subseteq G$ is Haar-null (in the sense of Christensen) if there is a Borel probability measure μ on G, and a Borel set $B \supseteq A$, such that for every $g, h \in G \ \mu(gBh) = 0$

Question

(CH) There is a subgroup $H \leq \mathbb{R}$, $H \in \mathcal{M} \setminus \mathcal{N}$, but what about Polish locally compact groups?

Question (Filipczak-Rosłanowski-Shelah)

Is it consistent that there is a translation invariant Borel hull operation on \mathcal{M} ?

Introduction O	Known results 00	Questions 00	Answers O	ldeas of the proofs	Open questions •O
Que	stion				
repla	cing null sets wr	t. the Haar m	easure with s	compact Polish gro sets in the Haar-nu	ıll ideal
(in tl	he sense of Chris	tensen), i.e. s	ubgroups in '	$\mathcal{HN}\setminus\mathcal{M},\ \mathcal{M}\setminus\mathcal{H}.$	N?

Definition

Let G be a Polish group. Then a set $A \subseteq G$ is Haar-null (in the sense of Christensen) if there is a Borel probability measure μ on G, and a Borel set $B \supseteq A$, such that for every $g, h \in G \ \mu(gBh) = 0$

Question

(CH) There is a subgroup $H \leq \mathbb{R}$, $H \in \mathcal{M} \setminus \mathcal{N}$, but what about Polish locally compact groups?

Question (Filipczak-Rosłanowski-Shelah)

Is it consistent that there is a translation invariant Borel hull operation on \mathcal{M} ?

Introduction O	Known results 00	Questions 00	Answers O	ldeas of the proofs	Open questions •O
Que	stion				
repla	cing null sets wr	t. the Haar m	easure with s	compact Polish gro sets in the Haar-nu	ıll ideal
(in tl	he sense of Chris	tensen), i.e. s	ubgroups in '	$\mathcal{HN}\setminus\mathcal{M},\ \mathcal{M}\setminus\mathcal{H}.$	N?

Definition

Let G be a Polish group. Then a set $A \subseteq G$ is Haar-null (in the sense of Christensen) if there is a Borel probability measure μ on G, and a Borel set $B \supseteq A$, such that for every $g, h \in G \ \mu(gBh) = 0$

Question

(CH) There is a subgroup $H \leq \mathbb{R}$, $H \in \mathcal{M} \setminus \mathcal{N}$, but what about Polish locally compact groups?

Question (Filipczak-Rosłanowski-Shelah)

Is it consistent that there is a translation invariant Borel hull operation on $\mathcal{M}?$

		Ideas of the proofs	Open questions
		0000000	

Thank you for your attention!