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Introduction

Small-large subsets

Orthogonality of N and M:

∃H ⊆ R, H ∈ N , R \ H ∈M.

Obviously H (similarly R \ H) cannot be a subgroup:

H ≤ R, H ∈ N

⇓

∃c /∈ H

H, (H + c) are disjoint co-meager sets.

What about subgroups that are small in one sense, and not small in the
other?
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Subgroups contained in exactly one ideal

Null but non-meager subgroups:

Theorem (Talagrand, 1980.)

There exist a null but non-meager filter in 2ω.

Theorem (Ros lanowski-Shelah, 2016.)

There exists a null but non-meager subgroup in 2ω (and in R).

Corollary

There is no translation invariant Borel hull operation on N .

Definition
f : N → N ∩ B is a translation invariant Borel hull operation on N , if
N ⊆ f (N) and f (N + x) = f (N) + x (∀N, x)
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Subgroups in exactly one ideal

Meager but non-null subgroups in 2ω (and in R):
Independent:

CH ⇒ cof(N ) = cov(N ) ⇒ ∃H ≤ 2ω (and R), H ∈M \N

non(N ) < non(M) ⇒ ∃H ≤ 2ω (and R), H ∈M \N

Remark
This latter generalizes to Polish locally compact groups.

Theorem (Ros lanowski-Shelah, 2016.)

It is consistent with ZFC that every meager subgroup is null in 2ω (and
in R).

This latter theorem also follows from an unpublished result of H.
Friedman.
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The general case

Ros lanowski and Shelah asked the following questions:

Question
Does every non-discrete locally compact group contain a null
non–meager subgroup?

Question
Is it consistent with ZFC that in every locally compact group every
meager subgroup is null?
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The general case

Definition (left Haar measure on a locally compact group)

If µL : B(G )→ [0,∞] is a Borel measure which is

left-invariant, i.e. µL(B) = µL(gB),

inner regular, i.e. µL(B) = sup{µL(K ) : K ⊆ B,K is compact},
µL(U) > 0 for U 6= ∅ open, µL(K ) <∞ for K compact,

then µL is a left Haar measure of G . Let µL denote its completion.

Remark
For an arbitrary locally compact group left and right Haar measures
always exist, and both are unique up to a positive multiplicative constant.

Remark
Recall that the ideal of null sets wrt. µL coincides with the ideal of null
sets wrt. µR , i.e. we can speak about null sets:

N = NR = NL
Márk Poór Answer to a question of Ros lanowski and Shelah
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Answer

For both questions we have affirmative answers:

Theorem (M.P. 2016.)

If G is an arbitrary non-discrete locally compact group, then there exists
a null but non-meager subgroup in G .

Theorem (M.P. 2016.)

In the Cohen model in every locally compact group every meager
subgroup is null.
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Null but non-meager subgroups in 2ω

Theorem
There exists a null but non-meager subgroup of 2ω.

Proof (Ros lanowski-Shelah)

Fix a non-principal ultrafilter U on ω. Partition ω into disjoint intervals:

Ij = [j2, (j + 1)2),

and let
H = {x ∈ 2ω : {j : x|Ij ≡ 0} ∈ U},

i.e. those sequences that are constant 0 on U-almost every Ij -s.
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Meager but non-null subgroups in 2ω

Theorem (H. Friedman)

The following holds in the Cohen model: Assume that F ⊆ 2ω × 2ω is an
Fσ-set which contains a non-null rectangle

C × D ⊆ F .

Then F contains a non-null measurable rectangle A× B.

Corollary (Fremlin, Shelah)

In the Cohen model every meager subgroup of 2ω is null.

Proof.
Let the meager subgroup H ≤ 2ω be covered by an Fσ meager set
S ⊆ 2ω:

H ⊆ S

Márk Poór Answer to a question of Ros lanowski and Shelah



Introduction Known results Questions Answers Ideas of the proofs Open questions

Meager but non-null subgroups in 2ω

Theorem (H. Friedman)

The following holds in the Cohen model: Assume that F ⊆ 2ω × 2ω is an
Fσ-set which contains a non-null rectangle

C × D ⊆ F .

Then F contains a non-null measurable rectangle A× B.

Corollary (Fremlin, Shelah)

In the Cohen model every meager subgroup of 2ω is null.

Proof.
Let the meager subgroup H ≤ 2ω be covered by an Fσ meager set
S ⊆ 2ω:

H ⊆ S
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Meager but non-null subgroups in 2ω

Proof.

H ⊆ S

Let f : 2ω × 2ω → 2ω denote the group operation.

Then f −1(S) ⊆ 2ω × 2ω is an Fσ-set, containing H ×H, since H is a
subgroup.

If H × H were non-null, then using Friedman’s theorem there would
be a measurable non-null rectangle

A× B ⊆ f −1(S).

But using Steinhaus’s theorem, f (A,B) = A + B ⊆ S contains a
nonempty open set, contradicting that S is meager.
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Null but non-meager subgroups in locally compact groups

Theorem (M.P. 2016.)

If G is a non-discrete locally compact group, then there exists a null but
non-meager subgroup in G .

Our proof splits into the following three steps:

Step 1: For an arbitrary G , find a compact normal subgroup K C G
such that G/K is a Polish Lie group, or a Polish profinite group.

Step 2: Assuming that there exists a null but non-meager subgroup
in G/K , verify that its pull-back under the quotient mapping is also
null and non-meager in G .

Step 3: Construction of null but non-meager subgroups in Polish Lie
groups, and Polish profinite groups.
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Null but non-meager subgroups in locally compact groups

For Steps 1 & 2 our main tool is the following:

Theorem (Gleason-Yamabe)

Let G be an arbitrary locally compact group. Then there exists an open
subgroup G ′ ≤ G such that for each neighborhood U of the identity there
is a compact normal subgroup K C G ′ inside U, and G ′/K is a Lie group.

With a slight modification we obtain a technical lemma:

Lemma
Let G be an arbitrary locally compact group. Then there exists an open
subgroup G ′ ≤ G such that for each neighborhood U of the identity
there is a compact normal subgroup K C G ′ inside U, and G ′/K is a
Polish Lie group.

Hence from now on we can assume that G = G ′, thus G is the inverse
limit of Polish Lie groups.
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Step 2

The following will be the key for Step 2.

Lemma

Let K C G be a compact normal subgroup such that G/K is Polish. Let
R ⊆ G be a co-meager set. Then there exists a compact normal
subgroup K ′ ⊆ K , where G/K ′ is Polish, and a co-meager set
R ′ ⊆ G/K ′ such that

π−1(R ′) ⊆ R

where π : G → G/K ′ denotes the canonical projection.

Let H/K ≤ G/K be a non-meager subgroup.
If the pull-back H were meager in G , then letting R = G \ H, and
applying the above Lemma, there would exist a compact normal
subgroup K ′ C G , K ′ ⊆ K , such that H/K ′ ≤ G/K ′ is meager.
Now since H/K ≤ G/K is non-meager, its preimage H/K ′ under the
projection ψ : G/K ′ → (G/K ′)/(K/K ′) = G/K is also non-meager since
ψ is a continuous open mapping between Polish spaces, a contradiction.
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Meager but non-null subgroups, Step 1

Theorem (M.P. 2016.)

In the Cohen model in every locally compact group every meager
subgroup is null.

Step 1: Friedman’s theorem holds for Polish locally compact groups.

Step 2: Assuming that our theorem holds for Polish locally compact
groups, it holds for all locally compact groups.

Step 1 : Fixing a locally compact Polish group G , using the Measure
Isomorphism Theorem there exist Fσ co-null sets C ⊆ 2ω, K ⊆ G , and a
bijection

f : C → K

such that
A ⊆ C is null ⇐⇒ f (A) ⊆ K is null,

A ⊆ C is Fσ ⇐⇒ f (A) ⊆ K is Fσ.
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Meager but non-null subgroups, Step 2

Lemma
Let G be a locally compact group which is an inverse limit of Polish Lie
groups. Let R ⊆ G be a co-meager set. Then there exists a compact
normal subgroup K , where G/K is Polish, and a co-meager set
R ′ ⊆ G/K such that

π−1(R ′) ⊆ R,

where π : G → G/K denotes the canonical projection.

Step 2 : Assuming that H ≤ G is a meager subgroup, let R = G \ H.

Then applying the above Lemma, π−1(R ′) ∩ H = ∅, thus
π(H) ∩ R ′ = ∅, i.e. π(H) ≤ G/K is a meager subgroup. Thus is
null, since the theorem holds for Polish groups.

Then π−1(π(H)) ⊇ H is also null.
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Question
What can we say about the case of non locally compact Polish groups,
replacing null sets wrt. the Haar measure with sets in the Haar-null ideal
(in the sense of Christensen), i.e. subgroups in HN \M, M\HN ?

Definition

Let G be a Polish group. Then a set A ⊆ G is Haar-null (in the sense of
Christensen) if there is a Borel probability measure µ on G , and a Borel
set B ⊇ A, such that for every g , h ∈ G µ(gBh) = 0

Question

(CH) There is a subgroup H ≤ R, H ∈M \N , but what about Polish
locally compact groups?

Question (Filipczak-Ros lanowski-Shelah)

Is it consistent that there is a translation invariant Borel hull operation
on M?
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Thank you for your attention!
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